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Let Pbe any projection offEc(n+l)[ -1,1] onto &.. such that P(Tn+tl=O. It is
shown that, for a wide class of such projections, Ilf - Pfll may be expressed in
terms of f(n + 1) in the same manner as En(f), the error of minimax approximation.
Furthermore, a general necessary condition is obtained for this phenomenon.
Ii] 1988 Academic Press, Inc.

1. INTRODUCTION

Suppose IE c(n+ 1)[ -1, 1]. Then it is known that for minimax
polynomial approximation on [ -1, 1],

En(f):= min 11/-pll=2n( ~1)' I/(n+I)(~)I, (1.1)
PE&n n.

where ~ E ( -1, 1) and 11·11 denotes the Chebyshev norm on [ -1, 1].
It is also well known that near minimax approximation is given by the

projection Ponto &;, interpolating I at the zeros of Tn + I' the Chebyshev
polynomial of degree n + 1. We then have

III -PIli =2n(n~ 1)! I/(n+l)(OI,
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where' E ( -1, 1). Details of both these results may be found, for example,
in [4]. Furthermore, it has recently been shown [1,3,5] that (1.2) also
holds (for possibly different (, of course) if P is taken to be the projection
onto &:, formed by truncating the Chebyshev series for I and if P is chosen
such that I - PI equioscillates on the point set consisting of the n + 2
extrema of Tn + I'

In this paper we first note that in all these cases of near minimax
approximation P( Tn + 1) = 0 and observe that this is a necessary condition
for (1.2) to hold for an arbitrary projection Ponto &:,. We will prove that
both of the following conditions (1.3) are necessary for (1.2) to hold.

(1.3(i))(i)

(ii)

PTn + 1 =0;

For each tE[-I,I], PI, must interpolate I,(x) =
(x - t): at (counting multiplicities) n + 1 points
XiE[Zi,Zi+I]' i=O, 1, ...,n, where {zi}7:d are the
consecutive extrema of Tn + l • (1.3(ii))

Note 1.1. In the case n=O interpret (1.3(ii)) to mean that O~Plt~ 1
and in the case n = I interpret an interpolation point of multiplicity two (at
Zl = 0) to mean (ft - Plt)(zd = 0 and It - PI,?; O.

Furthermore, although we are concerned in this paper with the action of
P on IEc(n+l)[ -1, I], we assume that the natural domain of P is
C[ - I, 1]. Also P is automatically defined on functions which are only
piecewise continuous and right continuous at the "jump points" on
[ -I, 1], e.g., X[" I] (= It if n = 0).

Notation. Let d={P;P satisfies (1.3)} and d*={PEd;P satisfies
(1.2) }.

We will show in Section 2 that (1.3) is necessary for (1.2) to hold and in
Section 4 that d * constitutes at least a large subclass of d.

2. PROOF OF NECESSARY CONDITIONS AND
PRELIMINARY RESULTS

THEOREM 2.1. Condition (1.3(i)) is necessary lor (1.2) to hold lor all
IE C (n + I) [ - 1, 1].

Proof Let L be the unique polynomial in &:, + I such that PL =0 and
L(n+I)=. I (i.e., (n+ 1)!L is monic). Then IIL-PLII = IILII ?;2- n/(n+ 1)1
with equality if and only if L = Tn + I/(n + I)! by the well-known minimal
property of Tn + I . I
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Note 2.1. If PfEf!JI" for fE C (n+ 1)[ -1,1], then

Ilf-Pfll~ n 1 min If<n+ll(x)l.
2 (n+1)! -1";x,,;1

This follows from (1.1) and Ilf - Pfll ~ En(f)·

Note 2.2. Consider

If(x) - (Pf)(x)1 ~ U(x) If(n+ I)«(JI,
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(2.1 )

(2.2)

where U(x) = SUPRE9tIR(x)l, £1.£ = {R:R E c(n+I)[-l, 1], PR = 0,
IIR(n+1111 ~ 1}, is the smallest allowable value in (2.2). U is the upper
envelope of £1.£ (see also [2]). It is clear from (2.1) that (1.2) holds if and
only if

for all XE [-1,1]. (2.3 )

From the Taylor series with integral remainder we have

(f-Pf)(x) =r K(x,t)f<n+ll(t)dt,
-I

where K is the Peano kernel

(2.4 )

K(x, t) = (f,(x) - (Pf,)(x))/n!

{
(X- nn,

f,(x)=(x-t)~= 0,

Thus

U(x) =r IK(x, t)1 dt,
-1

and UE C[ -1,1].

x~t

x< t.

(2.5)

THEOREM 2.2. Condition (1.3(ii)) is necessary for (1.2) to hold for all
fEc(n+I)[-l,l].

Proof If (1.2) holds then PTn+ I = 0 and from (2.4)

II Tn+I(X)
K(x,t)dt=2n( 1)'·

-I n+ .
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Also, from (2.3) and (2.5) we have

J
I 1

IK(x,t)ldt~2"( 1)"
-I n+ .

Hence in the x, t-plane along a line x = Zi' an extremum of T" + I' K(Zi' t)
must not change sign for t E [ - 1, 1] and

sign r K(Zi' t) dt =sign T,,+ I(ZJ = (-1)"+ I-i
-I

and thus (except for zeros)

sign K(Zi' t) = (-1)"+ I-i,

For a given t, the error

i = 0, 1, ..., n + 1.

e(x):= It(x)-(Plt)(x)=n!K(x, t)

must alternate in sign on zo, Z I' ..., Z" + I' A repeated zero of e is a multiple
interpolation point.

In the case n = 1, if e(O) =°with t = Z 1 = 0, this root is considered to be
of multiplicity two. In the case n = 0, It is not continuous at x = t (t > -1),
but e( - 1) and e( 1) are of opposite signs. I

A projection P from C(,,+I)[ -1,1] onto ~ can be identified with an
(n + 1)-dimensional subspace [~, ...,.5e,,] of the dual of C (" + 1)[ -1, 1],
where ~, ..., .5e" is an arbitrary basis, by PI = I,7=0 (ft;f) Pi> where PiE~,
O~i~n, and the {Pi}7~0 are chosen bidual to {ft;}7=0, i.e., ft;Pj=C>ij
(0 ~ i, j ~ n). (For a general characterization of functionals ff in the dual of
C ("+ 1)[ -1,1], see, e.g., [2].) In the following let "supp,u" denote the
support of ,u and "X~ y" mean x E X, Y E Y implies x ~ y.

DEFINITION 2.1. Suppose that P can be written as P = [~, ..., .5e,,],
where each ft; is represented by a nonnegative Borel measure ,ui (i.e.,
ft;1= J~I/(t)d,u;(t)) such that if j#i then either SUPP,ui~SUPP,uj or
supp ,ui ~ supp J-lj' We will say that P is positive-separated (or simply
positive if n = 0).

THEOREM 2.3. If P is positive-separated, then PI interpolates I at
(counting multiplicities) n + 1 points.

Proof Let [ai' b;] be the smallest interval containing SUpP,ui and
suppose without loss that J~I d,ui(t) = 1. Then ft;1=J~I/(t)dJ1.j(t)=

l(xJ J~ 1 d,u;(t) = l(xJ for some Xi E [aj, b;]. Thus &:. 3 PI interpolates I at
(counting multiplicities) the n+ 1 points {xi}7~0' I
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Examples of Positive-Separated Projections. (i) P is any interpolating
projection. Note that this is a special case of

(ii) P is any projection where ..2';= (eXi+eXi+l)/2 (ex denotes point
evaluation at x; i.e., eAf)=f(x)), where -1 ~XO~XI~ ... ~
X n ~ x n + 1~ 1. E.g., X j = Zj, the ith extremum of Tn + I' 0 ~ i~ n + 1, yields
the projection P of [5] such that f -Pf equioscillates on {zj}7~J.

Notation. As an important set of examples of P Ed, we introduce Y',
the subclass of .91 consisting of positive-separated projections P such that
"supp..2';" = supp J.1 j C [Zj, Zj+ I], where {zj}7~J are the consecutive
extrema of Tn + l' Let Y' * denote the subclass of Y' for which (1.2) holds.

In Section 3 we determine necessary and sufficient conditions for (1.2) to
hold in the case n = 0, where we will see that in particular Y' * = Y'. In
Section 4 we will show that for all n, d*(Y'*) is at least a substantial sub­
class of .91(Y').

3. THE CASE n = 0 AND EXAMPLES FOR n = 1

THEOREM 3.1. In the case n=O let P= [2] be positive and suppose
PT1 = O. Then (1.2) holds, i.e.,

where , E ( - 1, 1).

Ilf -Pfll = 1f'(01, (3.1 )

Proof By Note 2.1 we need only show Ilf - Pfll ~ 11f'11. Without loss
assume 21 = J~I dJ.1(x) = 1. Then f(x) - (Pf)(x) = f(x) - J~I f(t) dJ.1(t) =
J~I [f(x)- f(t)] d.u(t) = J~If'(C)[X-t] d.u(t), where C lies between x
and t. Hence 1(f-Pf)(x)I~IIf'IIJ~llx-tldJ.1(t). Now use
PT1 = J~ 1 t dJ.1(t) = 0 and J~ 1 dJ.1(t) = 1 to obtain

(I Ix-tl dJ.1(t) = [I (x-t)dJ.1(t)- ( (x-t)dJ.1(t)

= (I (x-t)dJ.1(t)-2 ( (x-t)dJ.1(t)

=x-2 ((X-t)dJ.1(t)=[1-2 (dJ.1(t)JX+2 (tdJ.1(t)

= [2 [I dJ.1(t) - 1]x - 2[I t dJ.1(t).
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But either S~ dJl( t) ~ ! or J'- I dJl( t) ~ !; in the first case

fl Ix-tldJl(t)~[1-2 (dJl(t)JIXI+2 (It1dJl(t)

~ 1-2 rdJl(t)+2 rdJl(t) = 1;
x x

in the second case

f, Ix-tldJl(t)~[1-2 [I dJl(t)JiX I+2 [I ItldJl(t)

~ 1- 2r dJl(t) + 2r dJl(t) = 1. I
-I -I

The following example shows that (3.1) does not hold in general if
P = [Y], where Y is signed (i.e., Jl is a signed measure).

EXAMPLE 3.1. Let t E (0, 1] and a>°and consider Y = -(aI2t) e -I +
(l + alt) eo - (aI2t) el • Then Y 1 = 1 and PT1 = Yx = 0. Yet for

{
-x+a

R(x)=
x+a

if -1 ~x~o

if o~x~ 1,

IR'(x)1 = 1, x # 0, and ~ R = -(aI2tHt + a) + (1 + alt) a - (al2tHt + a)
=0. Thus since IIRII = 1+a, we have that IIUII ~ 1+a> 1 = IITIII in (2.2)
and (3.1) cannot hold.

In fact Theorem 3.1 can be obtained as a corollary of the following
theorem.

THEOREM 3.2. In the case n = 0, P satisfies (1.2) if and only if
Pf = f( - 1) +J~ If' (s) dv( s), where v is some nonnegative measure satisfy­
ing J~ 1 dv = 1 and J~ dv ~ (l - x )/2,for all - 1~ x ~ 1.

Proof First, from, e.g., [2], Pf=cof(-l)+J~If'(s)dv(s)for some
constant Co and some bounded Borel measure v. Next, PI = 1 implies
Co= 1. Now if P satisfies (1.2), then (1.3(i)) implies PT1 =Px=O, i.e.,
0= -1 + J~I dv, and necessary condition (1.3(ii)) (see Note 1.1) implies
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that for all t, P[X [I. I)] =lim. ~ o(l/2e) I::+:: dv(s) =c( t) E [0, 1] and hence v
is a nonnegative measure. Finally,

U(x) =r IX[I. I](X) - P[X[I, 1](' )](x)1 dt
-I

=f [1-C(t)]dt+r c(t)dt
~1 x

=r [1- c( t)] dt - r dt + 2rc(t) dt
-1 x x

= x +2rc( t) dt
x

=x+2 rdv,
x

since L~ c(t) dt = Ii dv for all (x, y). Thus (1.2) holds if and only if U(x) ~ 1,
i.e., g dv ~ (l - x )/2 for all - 1~ x ~ 1. I

Note 3.1. Theorem 3.1 can be obtained as a corollary of Theorem 3.2,
as follows: Suppose Pf=P_If(s)djl(s)=f(-I)+I~J'(s)dv(s). Hence
f(-I)+ f(s)c(s)I~I-I~J(s)c'(s)ds=I~lf(s)djl(s) 'v'fEC(I)[ -1,1]
implies c(I)=O, c(-I)=I, and -c'(s)ds=djl(s). Thus U(x) =
x + 2 g c(t) dt implies U(I) = 1= U( -1) and U"(x) = -2c'(x) ~ O. Hence
U(x) is concave and U(x) ~ 1, x E [ -1, 1].

Note 3.2. The condition J.~ dv ~ (1 - x )/2, -1 ~ x ~ 1, is essential in
Theorem 3.2 as seen in the following example, i.e., the necessary conditions
(1.3) are not sufficient for (1.2) to hold.

EXAMPLE 3.2. Take c(t) to be the piecewise linear function of the
following diagram:

c

\ ~ \
I t

-1 -i -~ 0 ! 1

Take dv(t) = c(t) dt. Then J~ 1 dv = 1, but U(O) = 2nc(t) dt =~.
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EXAMPLE 3.3. Take c(t)=!, -1<t<l, c(-I)=I, c(I)=O. Then
Pf = P-l f(s) dJ1(s) = -f~l f(s) c'(s) ds = Hf(l) + f( -1)] and U(x) == 1,
-1~x~1.

Note 3.3. The analogue of the condition g dv ~ (l - x )/2, -1 ~ x ~ 1
for n;:::: 1, which provides sufficiency (and necessity) for (1.2) is unknown
and likely very involved. We can, however, obtain a more restrictive
sufficient condition which does extend (Theorem 4.3 of Section 4) to n;:::: 1.

THEOREM 3.3. Let n = 0, and consider the set SlIe consisting of all the
projections in d such that for each t E [ -1, 1], Pft must interpolate
ft(x) = (x - t) ~ = X[t. 1](X) at a point in [-e, e]. Then SlIe c d* for e~!
and e =! is largest possible.

Proof

{
O,

P(X[t,I])=C(t)= 1,
t>e

t< -e.

Then f~ 1 dv = f~ 1 c(t) dt = 1 implies f'-, c(t) dt = e. Now

Ix x>e

U(x)= ~x, x< -e

x + 2[f~ c( t) dt], - e < x < e.

Hence, for O~x~e, U(x)~x+2(e-x)~2e since O~c(t)~ 1 (Vt), and
similarly for -e ~ x ~ O. Thus if e ~!, U(x) ~ 1, -1 ~ x ~ 1. Moreover, the
example

c

~ J t

-1 1 1-2 2

shows that e= ! is largest possible. I
Note 3.4. Example 3.3 does not fall into d 1/ 2 and yet it does satisfy

(1.2). Thus d 1/2 is not all of d *.

Note 3.5. Theorem 3.2 can be restated in symmetric form: Pf = f(O) +
f~l f'(s) dv(s), where f~l dv = 0 and f~ dv ~ (1-lxl )/2, -1 ~ x ~ 1.
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THEOREM 3.4. In the case n =0, the only symmetric projection (Pf = Pf s,

where j>"(x) = f( - x)) satisfying (1.3) is the projection which evaluates a
function at the origin.

Proof It t > 0 then by use of Notes 1.1 and 3.5 we have that
P[X [t, I]] E [0, 1] as in the proof of Theorem 3.2 and hence v 1[0,1] is a
positive measure. But by symmetry v is a positive measure and thus since
J~ I dv = 0, we have v== O. I

Note 3.6. The projection of Theorem 3.4 clearly satisfies (1.2). Further­
more for n = 1, the following result can be shown.

THEOREM 3.5. In the case n = 1, consider a symmetric projection
supported on three points -1:::; YJo < YJI < YJ2:::; 1, where YJI = 0 and YJo = -YJ2'
Then (1.3) is sufficient for (1.2) to hold.

The results of Theorems 3.4 and 3.5 and the results of Brass [1] lead to
the following conjecture.

Conjecture. For all n = 0, 1,2, ... if P is a symmetric projection, then
(1.3) is also sufficient for (1.2) to hold.

4. ANALYSIS OF .9i * VIA THE PEANO KERNEL

The familiar Taylor series with integral remainder provides

f(x) = ±f(i)(-1) (X~l)i+r f(n+l)(t) (X-,t)':. dt,
i~O I. -I n.

(x - t)':. = (x - tr,
if x ~ t, and =0, if x < t. Thus, for any projection Ponto &:., p - Pp = 0 for
p E &:. and we have

1 fl(f - Pf)(x) =, [(x - t)':. - (P(· - I)':.)] f(n+ I)(t) dt,
n. _I

(4.1 )

the Peano kernel form of the error (f -Pf)(x). Thus we have (note that,
from (4.2), U(x) is continuous on [-1,1])

1 flU(x)=, I(x-t)':. -(P(.-t)':.)! dt.
n. -I

LEMMA 4.1.

1 fl, (P(· - t)':. )(x) dt = (PC - xo)':. )(x)/(n + 1).
n. xo

(4.2)
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Proof (Pf)(x)=L7=o [J~tf(s)d.u;(s)]p;(x).Thus

lIn [ 1 Jt (PC - t): )(x) dt =t ;~o L1 (S - t): dJ.l;(s) p;(X) dt

n [I 1 J
= ;~o L

1
t (S-t): dtdJ.l;(s) p;(X)

since if s > xo,

r(s-t):dt=f (s-ttdt
xo XQ

= (s - xo)(n + 1)/(n +1),

and otherwise go (s - t): dt = O. I

THEOREM 4.1. Suppose that for some fixed x E [ -1, 1], the Peano
kernel k(x, t) = [(x - t): - (P( . - t): )(x)]/n! changes sign at most once at
t< E [ -1, 1] (if no change of sign, take t< = ±1). Then

1
U(x)= l(x+l)n+l_(p(-+lt+ I )(x)

(n + I)!

- 2[(x - t<)n/ 1 - (P(· - tx):+ 1 )(x)]l. (4.3)

Proof By Lemma 4.1,

U(x)= lei -rk(x, t)dtl = ~! If
l

- 2r[(x-t): -(P(·-t):)(x)] dtl

1 l(x+l)n+l_(p('+l)n+l)(x)
(n + 1)!

- 2[ (x - tIn/ 1 - (P( . - tx)''t+ 1 )(x) ] I. I
(Theorem 4.1 coincides with [2, Theorem 9] in the case t x = ±1.)

COROLLARY 4.1. If L is the unique polynomial in &:. + 1 such that PL = 0
and L(n+ I) == 1, and if for some fixed x E [ -1, 1], k(x, t) changes sign at
most once at t = t< E [ -1, t] (if no change of sign, take tx = ±t), then
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Proof In (4.3), (x + 1r+ I/(n + I)! = L + p, where p E &:,. Hence

1 [(x+l)n+l_(p(.+lt+ 1)(x)]
(n + 1)!

= L + P - P(L + p) = L + P - PL - Pp

=L+p-O-p=L. I
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COROLLARY 4.2. If for some fixed x E [ -1, 1], k(x, t) does not change
sign (as a function of t) in ( - 1, 1), then

U(x)= IL(x)l. (4.5)

Proof Takingt.= -1 ort.=1 yields [(x-tx)'~+l_(P(.-tx)'~.+I)(X)]/

(n + I)! = L (as in the proof of Corollary 4.1) or 0, respectively. Thus (4.5)
follows from (4.4). I

LEMMA 4.2. For each fixed t, the Peano kernel k(x, t) = [(x - t): ­
(P(· - 0: )(x)]/n! either has (as afunction of x) at most n + 1 distinct roots
in [ -1, 1] or else is identically zero either in [ -1, t] or in [t, 1].

Proof For n = 0 see Note 1.1. So assume n ~ 1. We show by induction
that for each fixed t, if p E &:, then (x - 0: - p(x) either has at most n + 1
distinct roots in [-1,1] or else is identically zero either in [-1, t] or in
[t, 1]. For n = 1 the proposition is immediate by inspection. Suppose the
proposition is true for n and suppose (x - t):+ 1 - P is not identically zero
either in [ -1, t] or in [t, 1] and that (x - t):+ 1_P has more than n + 2
distinct roots in [-1, 1]. Then by Rolle's theorem [(x + 0:+ 1_ p]' =
(n + l)(x + t): - p' has more than n + 1 distinct roots in [-1, 1],
contradicting the induction hypothesis, since if (n + l)(x + t): - p' were
identically zero in 1= [ -1, t] or [t, 1], then (x +0:+ 1_P would have to
be a nonzero constant in I and thus by inspection could have at most one
( < n + 2) root in [ - 1, 1]. I

Note 4.1. Note by inspection that for t fixed, if k(x, t) == 0 in [ -1, t],
then k(x, t) > 0 in (t, 1], and if k(x, t) == 0 in [t, 1] then
(-l)n+lk(x,t»Oin [-I,t).

THEOREM 4.2. Suppose that for each t E [ -1, 1], Pf, must interpolate
f,(x) = (x - t): at (counting multiplicities) n + 1 points Xi in [ai' bJ, where
bi_ 1 ~x~ai' O~i~n+ 1 (b_ 1 = -1, an+1 = 1). Then the Peano kernel
k(x, t) (of Theorem 4.1) does not change sign in [ -1, 1] (as afunction of t)
for each fixed xE[-I,I]-U7=o(ai,bJ, In fact (_1)n+l-ik(x,t)~O,

O~i~n+ 1.
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Proof For each fixed t we see that k(x, t) = f, - Pf, has at least n + 1
zeros XiE [ai' bJ, i=O, ..., n. Hence by Lemma 4.2 and Note 4.1, the
conclusion follows. I

Using Corollary 4.2, we conclude the following.

COROLLARY 4.3. Under the hypothesis of Theorem 4.2, U(x) = IL(x)1
(see Corollary 4.1) for x E [ -1, I] - U7=o (ai' bJ

Letting ai = bi' i = 0, ..., n, we obtain the following known result (e.g.,
[2, Theorem 3]).

COROLLARY 4.4. If P is an interpolating projection, then U(x) = IL(x)1
for all x E [ - I, I].

LEMMA 4.3. d and d * are convex.

Proof Let PI' P2 Ed, where PI and P2 satisfy (1.2). Then for all
AE[O,I], P=AP I+(I-A)P2 satisfies (1.3(i)) since PI and P2 satisfy
(1.3(i)). Also, since each function f,(x) = (x - t): is nondecreasing, it
follows that since PI and P2 satisfy (1.3(ii)), so does P. Hence d is convex.
Furthermore (2.1) holds for P and if also PI and P2 each satisfy (1.2), then

II f - Pfll ~ A II f - PI fll + (1 - A) Ilf - P2 fll

2n(n~ I)! [A If(n+l)((dl +(I-A) If(n+I)((2)1]

2n(n~I)! If(n+I)(OI

for some ( between (1 and (2' I
Note (and Notation) 4.2. The class d contains for each I: E [0, 1] the

set st. (d = d l ) consisting of all the projections P in d such that for each
t E [ -1, 1], Pf, must interpolate f,(x) = (x - t): at (counting multiplicities
if 1:= 1) n+ 1 points XiE [Wi-I:(Wi-Zi ), Wi+I:(Zi+I-W;)], where {w i }7=o
are the consecutive roots of Tn + I' Also denote fI'. =f/ n st.. (Recall that by
Theorem 3.1, f/* = f/I (=f/) if n = 0.)

THEOREM 4.3. d* (the subclass of d for which (1.2) holds) contains st.,
for some 1: 1 > 0.

Proof By Corollary 4.3, U,(x) = ITn+l(x)I/(n + I)! for all
x E [ -1, 1] - JY,;, where JY,; = U7=o (Wi -I:(W; - z;), Xi + I:(z;+ I - Wi))' Fix
I: < 1. Then U,(x) is uniformly bounded as a function of x E [ -1, 1] as
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follows. Let g denote the mapping from [-1, 1]2 x {X7=0 [Wi-S(Wi-Z;),
Wi +S(Zi+ I - Wi)]} which associates the point (t, x, xo, ..., x n) with (Pft)(x),
the value of the polynomial which interpolates ft on {xo, x" ..., x n} at x.
Then g is a continuous function on a compact set and hence is bounded.
We conclude that U,(x)=sup(l/n!)p_Ilft(x)-(Pft)(x)ldt is uniformly
bounded (in x).

But also U,(x) is continuous as follows. Ue(x) is the upper envelope of a
set fll, consisting of REc(n+I)[-I,I] and IIR(n+I)II~1. Suppose UAx)
were discontinuous at xo. Then there exists a sequence Xi --+ Xo so that
U,(Yi) -1+ Ue(XO)' Thus, since UAx) is bounded on [-1,1], there exists a
convergent subsequence Yi= x ni of Xi so that U,(Yi) --+ Uo=F U,(xo) and sup­
pose without loss that Uo< U,(xo). Thus there must exist a sequence R i E [f(
such that Ri(xO) --+ U,(xo), but Ri(y;) --+ U, ~ Uo' Hence Ri(xO) - Ri(y;) =
R;((,)(xo - y,) for some sequence Cbetween X o and Yi implies IR;(OI-+ 00.

But there exists a uniform bound for IIR'II, R E fJIt, as follows: if n = 0 we are
done; if n ~ 1,

1 flR(x)=, [(x-f)"t- -(Pft)(x)] Rn+l(t)dt
n. -1

implies

1 flR'(x) =, [n(x - t)"t-~' - (Pft)' (x)] Rn+ I(t) dt
n. -I

and we get a uniform bound for R' since the coefficients of (Pft)' are boun­
ded by nM, and thus the polynomials (Pft)' (x) are uniformly bounded (in
x and t). Thus we contradict IR;(OI--+ (fJ and the assumption that U,(x) is
discontinuous.

Now by Corollary 4.3 for each fixed x, U,(x) decreases (as S --+ 0) to
1Tn +, (x)1 /(n + I)! and hence by Dini's theorem U,(x) decreases uniformly.
Thus first since Tn + I(w;) = 0 (i = 0, ..., n), pick So such that x E~

implies ITn+,(x)I~! IITn+,II· Then pick O<SI ~so such that IU,,(x)­
ITn+l(x)I/(n+ 1)!I~! IITn+,II/(n+ I)! for all XE [-1,1]. We conclude
that IU,Jx)1 ~ II Tn+,II /(n + I)! for all x E [ -1, 1]. Thus IU(x)1 ~

II Tn +,II /(n + I)! and thus (1.2) holds (recall Note 2.2) for all P E Silf.1' I
Note 4.3. The largest possible allowable value of s, in Theorem 4.3 is

.of course of interest. Only for the case n = 0 is the value known (see
Section 3).

By Lemma 4.3 we can note finally the following fact.

COROLLARY 4.5. If P belongs to the convex hull of .91.
1

u {Pe}, where
Sill 3 Pe is the "equioscillating" projection of [5] or the truncated Chebyshev
projection of [1, 3], then P satisfies (1.2).
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